

Complex bacterial samples and rRNA removal

Legal disclaimer

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Agenda

Background

FastSelect –5S/16S/23S: An introduction

FastSelect –5S/16S/23S: Results

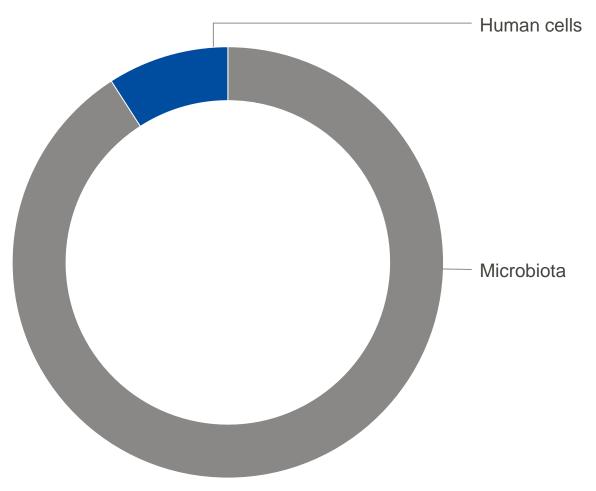
Summary

Agenda

Background

FastSelect -5S/16S/23S: An introduction

FastSelect –5S/16S/23S: Results


Summary

4

Humans or 'superorganisms'?

Total number of cells: Human cells versus microbiota

Cellular composition of the 'superorganism'

Estimation of the number of microbial cells that live in and on the human body; human cells are outnumbered by a factor of 10

Nomenclature:

- Microbiota are the microbes that live in a specific location, e.g., the human body, the gut, soil, etc.
- Metagenomics is the study of the collection of genomes derived from a specific sample or community
- Metatranscriptomics is the study of the RNA expression of genes from a community sample to interpret the physiological state of that community at that time

Microbiota composition

Microorganisms cluster by body site

Cataloguing efforts by the NIH Human Microbiome Project suggest:

- Around 10,000 organisms live with us
- Around 8 ×10⁶ genes constitute this 'second genome'

Identifying microbiota in healthy individuals revealed:

- Different body sites have unique communities
- Race, age, gender, weight or ethnicity can affect microbiota composition

Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.

Environmental microbiomes and metagenomics

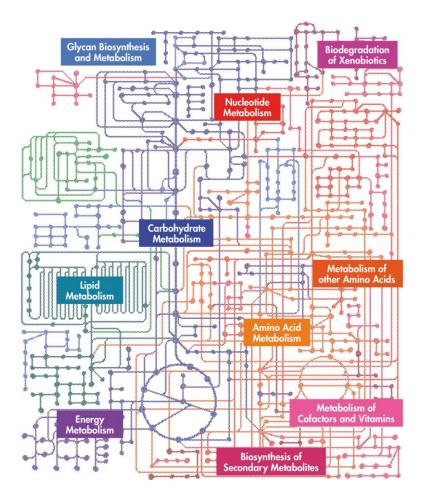
The Earth Microbiome Project

Multidisciplinary effort to survey the microbial composition of diverse environments across the globe:

• Aims to process 200,000 samples from different biomes and generate a database of microbes and their gene products

Estimates of bacterial diversity:

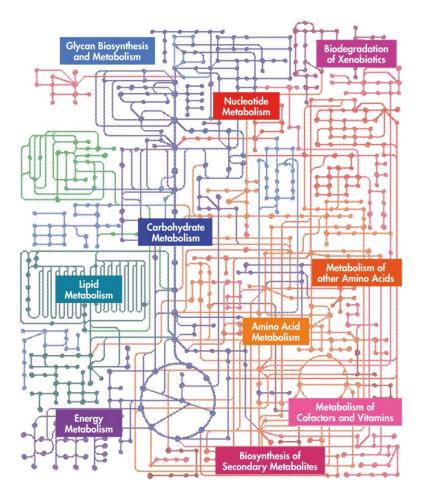
- 160 distinct types of bacteria in 1 ml of ocean water
- 6400–38,000 types of bacteria in 1 gram of soil


These estimates are for bacteria alone; they do not include viruses, archaea or fungi

Source: Curtis, T.P., Sloan, W.T. and Scannell, J.W. (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99, 10494–9.

Complexity and function of genomic content

Function of microbiome enables individual survival

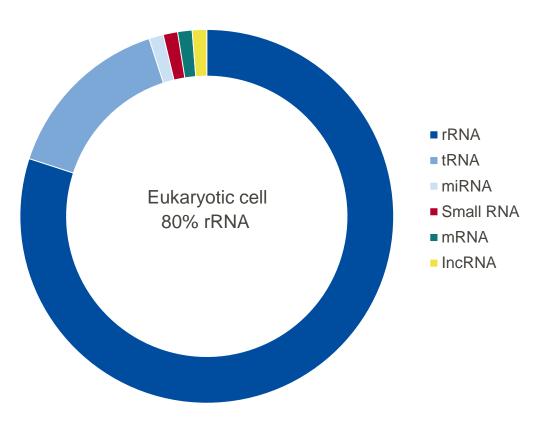


Each organism has developed its:

- Genetic content for its own survival in a specific environment
- Metabolism tuned to local nutrient sources
- Virulence factors for stable colonization
- Antibiotic resistance genes to metabolize toxins

Complexity and function of genomic content

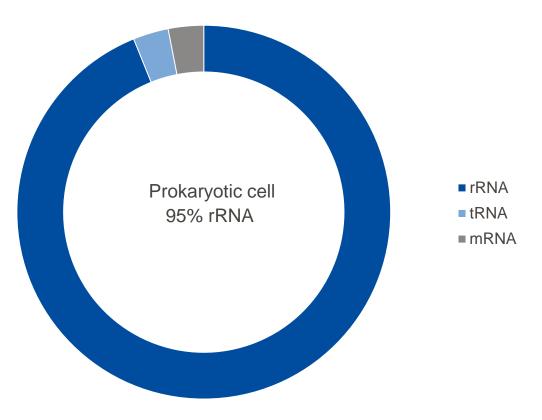
Function of microbiome enables individual survival


Understanding the microbiota

- DNA who is or was there
- RNA who is alive and what they are doing
- RNA can be used to identify:
 - Metabolic status
 - Expression of virulence factors
 - Expression of antibiotic resistance
 - Both host and microbiota

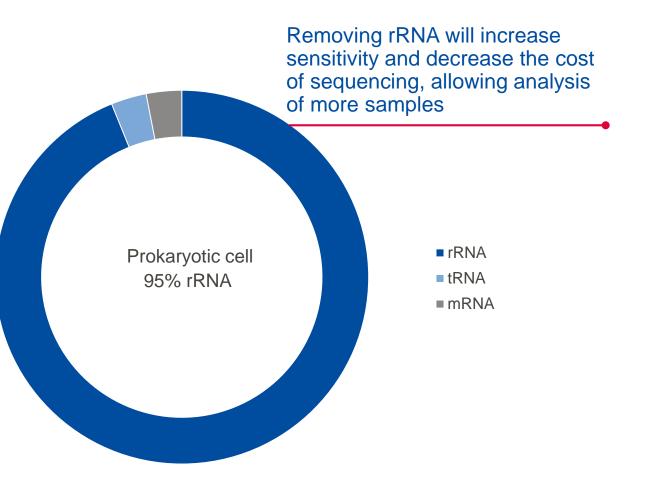
Library enrichment/depletion strategies: Whole transcriptome NGS

Enrichment or depletion is necessary to maximize reads from the RNAs of interest


- Typical RNA composition in a eukaryotic cell: >80% rRNA
- Highly abundant transcripts consume a lot of reads
- Enrichment or depletion is used to obtain more reads from the RNAs of interest, such as:
 - mRNA
 - IncRNA

Library enrichment/depletion strategies: Whole transcriptome NGS

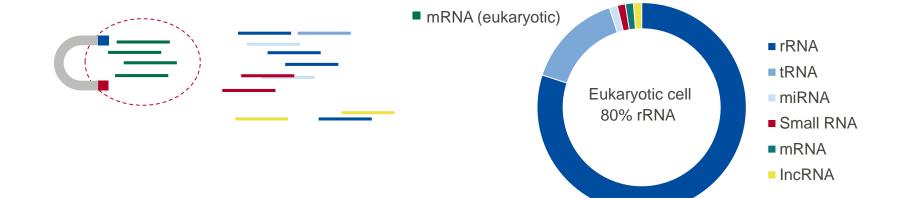
Enrichment or depletion is necessary to maximize reads from the RNAs of interest


- Typical RNA composition in a prokaryotic cell: 95% rRNA
- Highly abundant transcripts consume a lot of reads
- Enrichment or depletion is used to obtain more reads from the RNAs of interest, such as:
 - mRNA
 - IncRNA

Library enrichment/depletion strategies: Whole transcriptome NGS

Enrichment or depletion is necessary to maximize reads from the RNAs of interest

- Typical RNA composition in a prokaryotic cell: 95% rRNA
- Highly abundant transcripts consume a lot of reads
- Enrichment or depletion is used to obtain more reads from the RNAs of interest, such as:
 - mRNA
 - IncRNA


QIAGEN

Library enrichment/depletion strategies: Whole transcriptome NGS

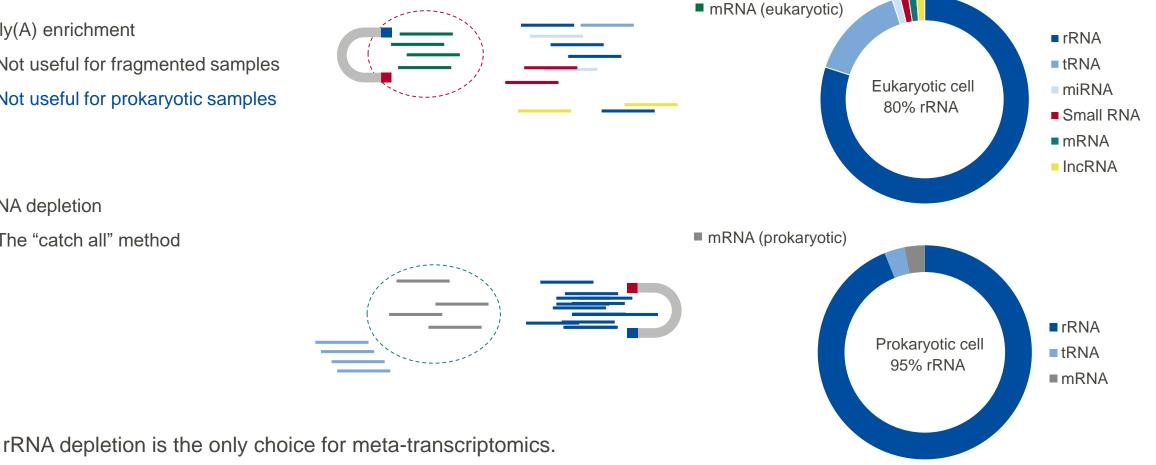
Enrichment/depletion strategies

Poly(A) enrichment

- Not useful for fragmented samples
- Not useful for prokaryotic samples

QIAGE

Library enrichment/depletion strategies: Whole transcriptome NGS


Enrichment/depletion strategies

Poly(A) enrichment

rRNA depletion

• The "catch all" method

- Not useful for fragmented samples
- Not useful for prokaryotic samples

Agenda

Background

FastSelect –5S/16S/23S: An introduction

FastSelect –5S/16S/23S: Results

Summary

FastSelect -5S/16S/23S: An overview

What is FastSelect -5S/16S/23S?

 Fragmentation and pan-bacterial (5S/16S/23S) rRNA depletion module

Number of reactions:

• 24, 96 and 384

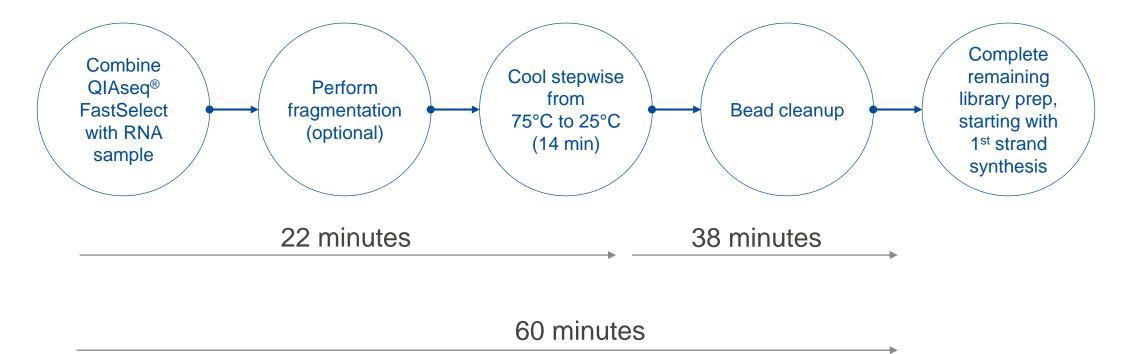
How does it work?

• Inhibits reverse transcription of its specific targets

Coverage:

- Designed to block community level cDNA synthesis of 5S, 16S and 23S rRNA
- Designed against SILVA 16S sequences (nearly 600,000 unique entries), SILVA 23S sequences (nearly unique 170,000 entries) and 5S rRNA Database (over 7,200 unique entries)
- Theoretically blocks >95% cDNA synthesis of all 5S, 16S and 23S rRNA sequences
 - In practice, results will vary, based on the exact composition of the sample

Total RNA input:


• 20 ng to 1 µg

Tested RNA library prep kit compatibility:

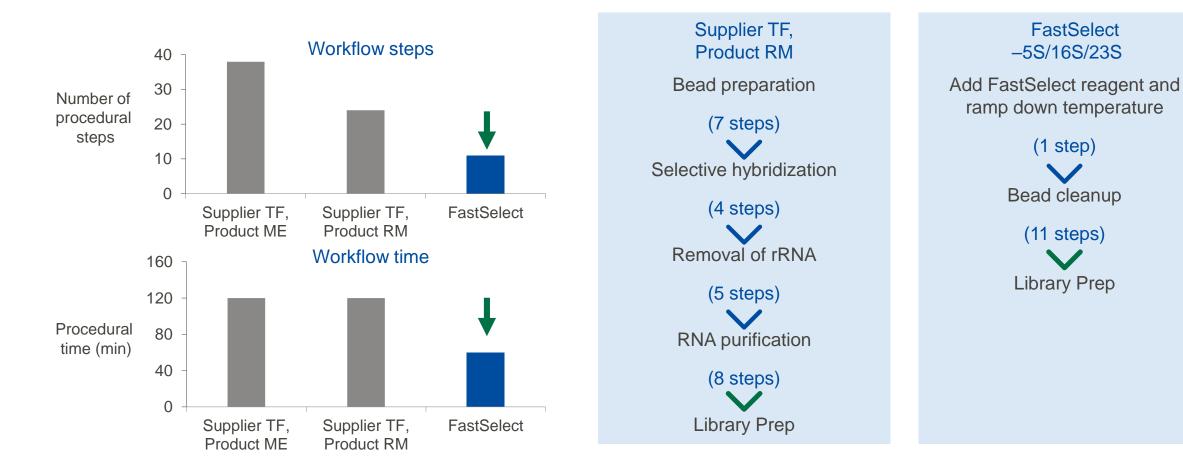
- QIAseq Stranded Total RNA Lib Kit (QIAGEN Group), TruSeq[®] Stranded (Illumina[®], Inc), NEBNext[®] Ultra II Directional (New England Biolabs, Inc)
- FastSelect is compatible with most RNA library prep kits

FastSelect –5S/16S/23S: Workflow

FastSelect –5S/16S/23S: What's in the box?

Kit sizes:

- 24 (cat. no. 335925)
- 96 (cat. no. 335927)
- 384 (cat. no. 335929)


Kit components and purpose:

- FastSelect 5S/16S/23S: rRNA removal reagent
- FastSelect FH Buffer: Fragmentation and/or hybridization buffer
- Nuclease-free Water
- QIAseq Beads
- QIAseq Bead Binding Buffer

QIAseq FastSelect -5S/16S/23S: rRNA removal

FastSelect offers an attractive, streamlined workflow versus kits from another supplier.

Agenda

Background

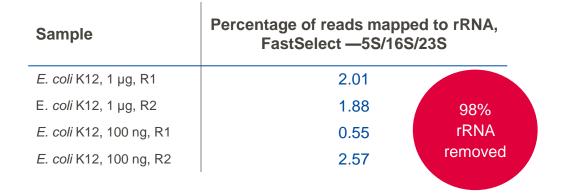
FastSelect -5S/16S/23S: An introduction

FastSelect –5S/16S/23S: Results

Summary

Experimental overview

QIAGEN


- Sample: 1 μg and 100 ng, DH5α *E. coli* total RNA (Thermo Fisher)
- Depletion: No depletion;
 FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics
 Workbench

Experimental overview

QIAGEN

- Sample: 1 μg and 100 ng, DH5α *E. coli* total RNA (Thermo Fisher)
- Depletion: No depletion;
 FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

FastSelect substantially removes rRNA

Experimental overview

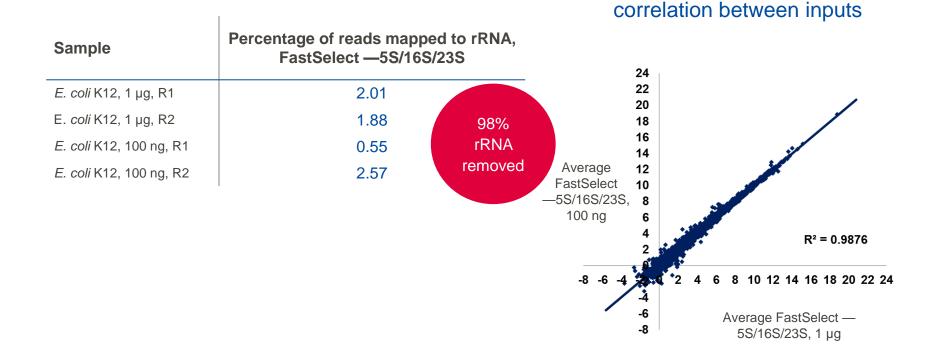
QIAGEN

- Sample: 1 μg and 100 ng, DH5α *E. coli* total RNA (Thermo Fisher)
- Depletion: No depletion;
 FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics
 Workbench

FastSelect substantially removes rRNA

Percentage of reads mapped to rRNA, Sample 24 22 E. coli K12, 1 µg, R1 2.01 20 E. coli K12, 1 µg, R2 1.88 98% 18 16 rRNA E. coli K12, 100 ng, R1 0.55 14 removed Average 12 *E. coli* K12, 100 ng, R2 2.57 FastSelect 10 -5S/16S/23S. 8 100 ng R² = 0.9876 -8 -6 -4 8 10 12 14 16 18 20 22 24 6 4 -6 Average FastSelect — -8 5S/16S/23S, 1 µg

Strong gene expression


correlation between inputs

Experimental overview

QIAGE

- Sample: 1 μg and 100 ng, DH5α *E. coli* total RNA (Thermo Fisher)
- Depletion: No depletion; FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics
 Workbench

FastSelect substantially removes rRNA

- FastSelect efficiently removes more than 95% of rRNA
- Gene expression values from FastSelect-treated samples, even at different RNA input amounts, are highly correlative (Log2 RPKM > 0.3)

Strong gene expression

Sample to Insight

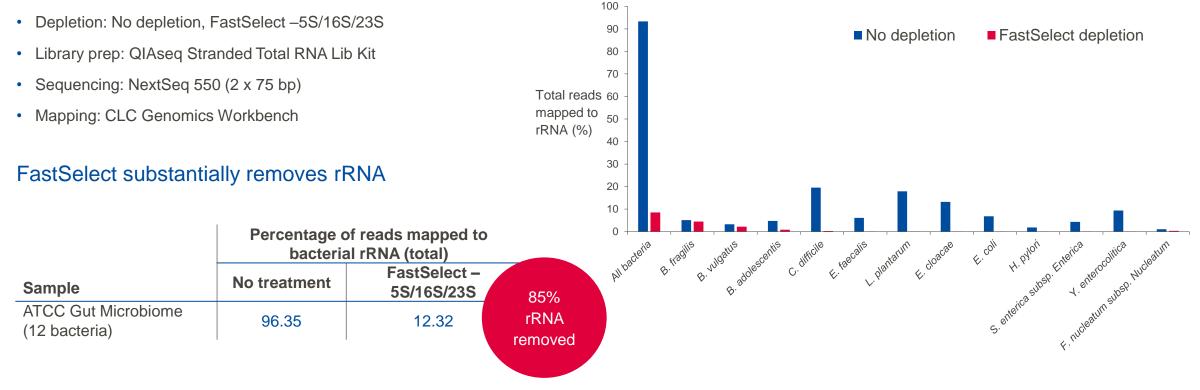
Experimental overview

- Sample: 100 ng, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect –5S/16S/23S
- Library prep: QIAseq Stranded Total RNA Lib Kit
- Sequencing: NextSeq 550 (2 x 75 bp)
- Mapping: CLC Genomics Workbench

Experimental overview

- Sample: 100 ng, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect –5S/16S/23S
- Library prep: QIAseq Stranded Total RNA Lib Kit
- Sequencing: NextSeq 550 (2 x 75 bp)
- Mapping: CLC Genomics Workbench

FastSelect substantially removes rRNA

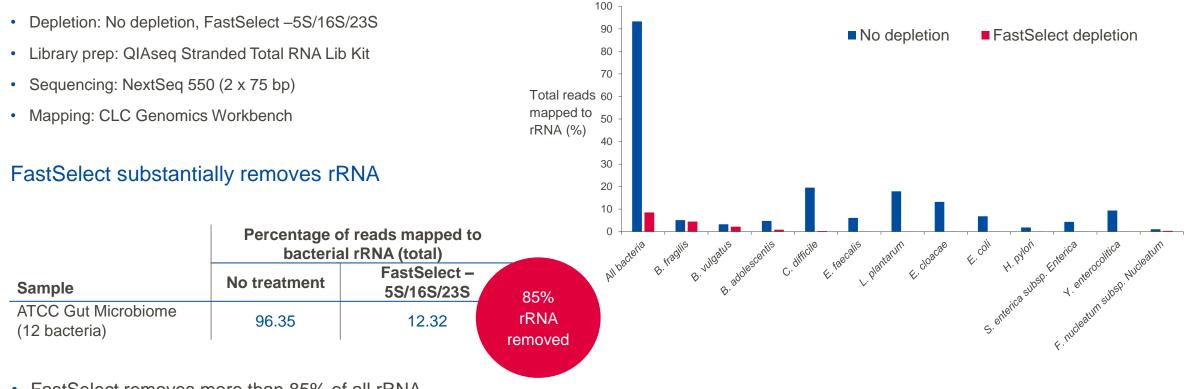

	Percentage o bacteria				
Sample	No treatment	FastSelect – 5S/16S/23S	85%		
ATCC Gut Microbiome (12 bacteria)	96.35	12.32	rRNA removed		

Experimental overview

QIAGE

• Sample: 100 ng, Gut Microbiome Whole Cell Mix (ATCC)

Robust depletion of rRNA from individual species



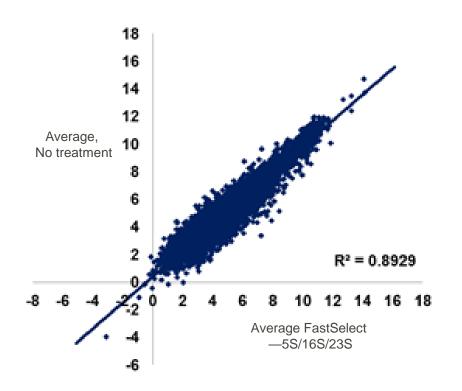
Experimental overview

QIAGE

• Sample: 100 ng, Gut Microbiome Whole Cell Mix (ATCC)

Robust depletion of rRNA from individual species

- FastSelect removes more than 85% of all rRNA
- When individual species are mapped, FastSelect removes rRNA from a broad range of species


FastSelect –5S/16S/23S does not alter gene expression in gut bacterial communities

Strong gene expression correlation

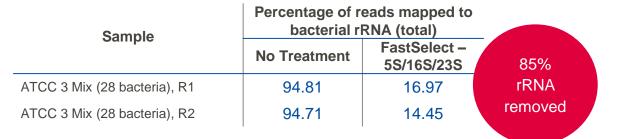
Experimental overview

QIAGE

- Sample: 100 ng, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect -5S/16S/23S
- Library prep: QIAseq Stranded Total RNA Lib Kit
- Sequencing: NextSeq 550 (2 x 75 bp)
- Mapping: CLC Genomics Workbench

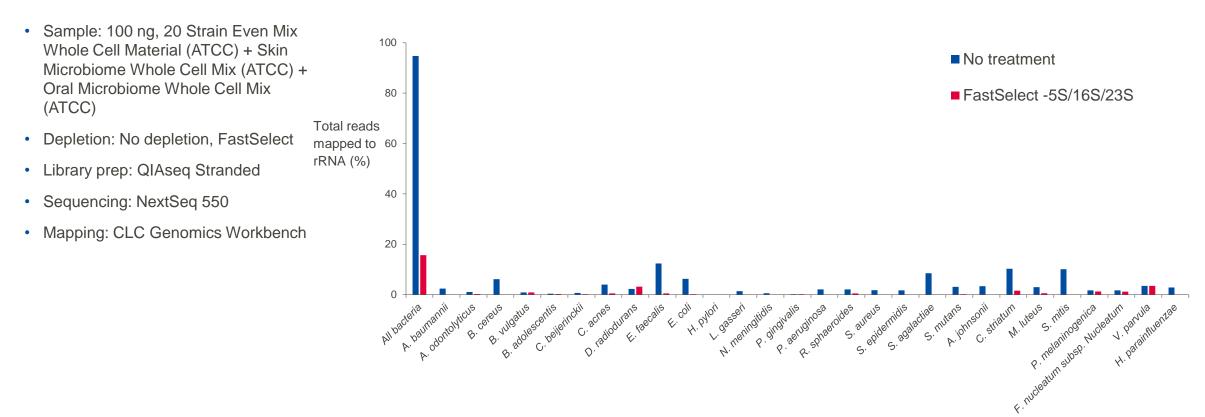
- FastSelect removes more than 85% of all rRNA
- When individual species are mapped, FastSelect removes rRNA from a broad range of species

Experimental overview


- Sample: 100 ng, 20 Strain Even Mix Whole Cell Material (ATCC) + Skin Microbiome Whole Cell Mix (ATCC) + Oral Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

Experimental overview

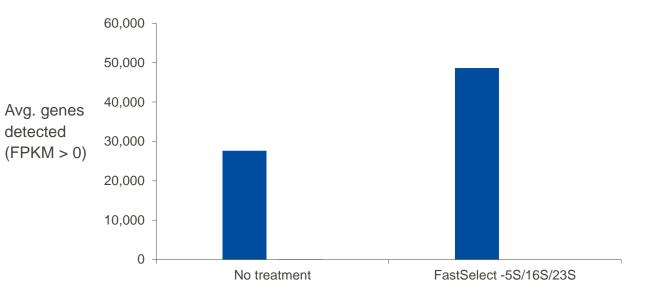
QIAGEN


- Sample: 100 ng, 20 Strain Even Mix Whole Cell Material (ATCC) + Skin Microbiome Whole Cell Mix (ATCC) + Oral Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

FastSelect substantially removes rRNA

Experimental overview

QIAGE


FastSelect robustly depletes rRNA (individual species)

Experimental overview

QIAGE

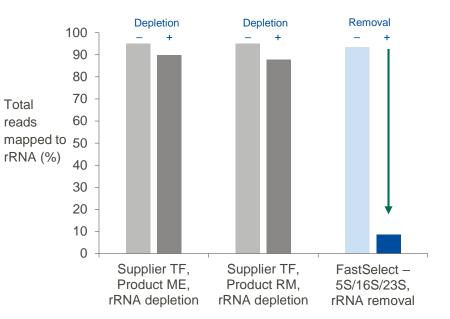
- Sample: 100 ng, 20 Strain Even Mix Whole Cell Material (ATCC) + Skin Microbiome Whole Cell Mix (ATCC) + Oral Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

FastSelect increases detected genes

- FastSelect efficiently removes rRNA, freeing up substantial read budget.
- In turn, this read budget enables a dramatic increase in the number of genes detected

Experimental overview

QIAGEN


- Sample: 1 µg, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, Supplier TF – Product ME, Supplier TF – Product RM, FastSelect – 5S/16S/23S
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics
 Workbench

Experimental overview

QIAGEN

- Sample: 1 µg, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, Supplier TF – Product ME, Supplier TF – Product RM, FastSelect – 5S/16S/23S
- Library prep: QIAseq Stranded
- Sequencing: NextSeq 550
- Mapping: CLC Genomics
 Workbench

FastSelect robustly removes rRNA, while the other supplier's kits do not

Experimental overview

QIAGEN

- Sample: 1 µg, Gut Microbiome Whole Cell Mix (ATCC)
- Depletion: No depletion, Supplier TF – Product ME, Supplier TF – Product RM. FastSelect -5S/16S/23S
- Library prep: QIAseq Stranded
- Sequencing: NextSeg 550
- Mapping: CLC Genomics Workbench

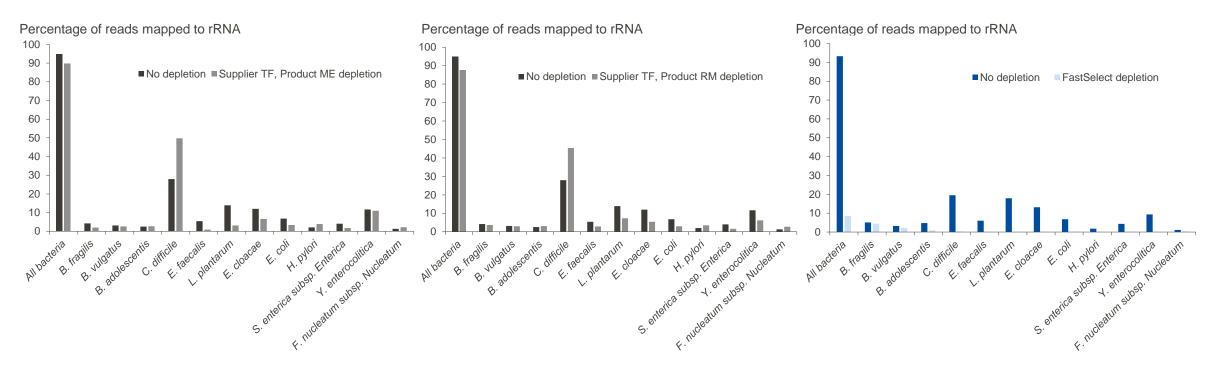
FastSelect robustly removes rRNA, while the other supplier's kits do not

Depletion Removal Depletion 100 100 90 90 80 80 Sequencing 70 70 reads 60 60 available for mapped to 50 50 gene rRNA (%) 40 expression 40 analysis (%) 30 30 20 20 10 10 0 Supplier TF, Supplier TF, FastSelect -No rRNA Supplier TF, Supplier TF, FastSelect -Product RM Product ME. Product RM. 5S/16S/23S. depletion Product ME 5S/16S/23S rRNA removal rRNA depletion rRNA depletion rRNA removal rRNA depletion rRNA depletion

• FastSelect efficiently removes rRNA, while Supplier TF's rRNA depletion products do not

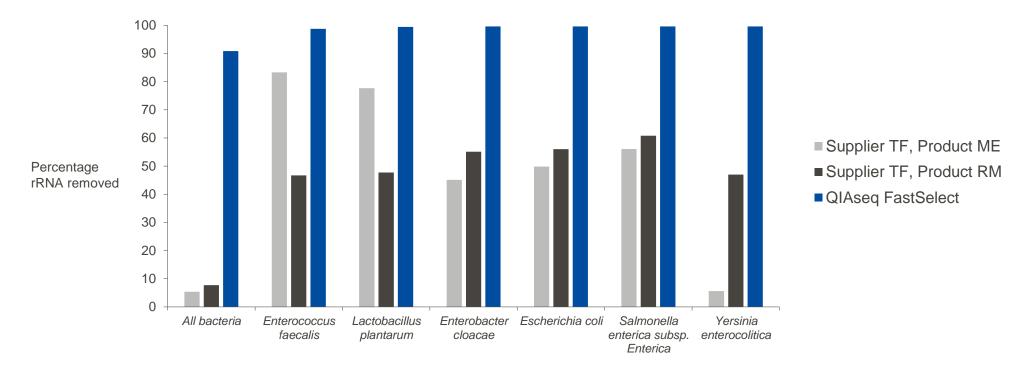
Total

reads


• The robust rRNA removal frees up a substantial amount of sequencing reads (9x compared to the other supplier's kits) for gene expression analysis

FastSelect frees up reads for gene detection

Supplier TF, Product ME


Supplier TF, Product RM

FastSelect -5S/16S/23S

- The three figures depict the percentage of rRNA removed for "all bacteria" and the individual species in the community
- FastSelect efficiently removes rRNA from a broad range of bacterial species, while Products ME and RM from Supplier TF do not

FastSelect robustly removes rRNA, while the other supplier's kits do not

- When "all bacteria" are analyzed, FastSelect removes greater than 90% of all rRNA, while other supplier's kits remove less than 10%
- When select, individual bacteria are analyzed, the depletion varies for the other supplier's kits, while it remains consistently high for FastSelect

FastSelect is compatible with the QIAseq Stranded Total RNA Lib Kit

FastSelect is compatible with most RNA library prep kits.

FastSelect –5S/16S/23S: Robust, reproducible results

Experimental overview

- Sample: 1 µg and 100 ng, Gut Microbiome Whole Cell Mix
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded, TruSeq Stranded, NEBNext Ultra II Directional
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

FastSelect –5S/16S/23S: Robust, reproducible results

Experimental overview

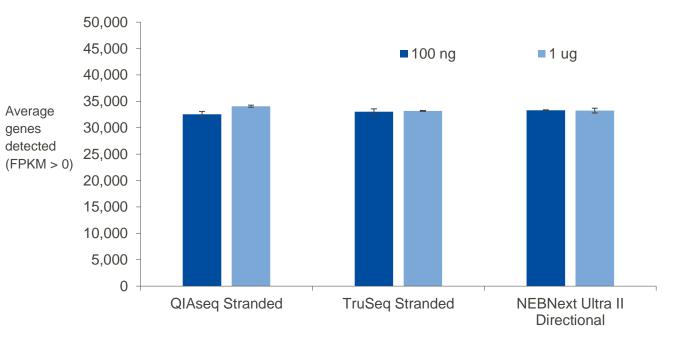
- Sample: 1 µg and 100 ng, Gut Microbiome Whole Cell Mix
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded, TruSeq Stranded, NEBNext Ultra II Directional
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

FastSelect substantially removes rRNA, regardless of the RNA library prep kit used

QIAseq Stranded			TruSeq Stranded			NEBNext Ultra II Directional		
	Percentage of reads mapped to bacterial rRNA (total)			Percentage of reads mapped to bacterial rRNA (total)			Percentage of reads mapped to bacterial rRNA (total)	
Sample	No treatment	FastSelect – 5S/16S/23S	Sample	No treatment	FastSelect – 5S/16S/23S	Sample	No treatment	FastSelect – 5S/16S/23S
1 µg	93.28	8.54	1 µg	93.44	19.42	1 µg	93.17	8.55
100 ng	92.46	11.94	100 ng	92.18	24.11	100 ng	92.17	8.83

FastSelect –5S/16S/23S is compatible with QIAGEN, Ilumina and NEB Kits.

FastSelect –5S/16S/23S: Robust, reproducible results


Experimental overview

00000 QIAGEN

- Sample: 1 µg and 100 ng, Gut Microbiome Whole Cell Mix
- Depletion: No depletion, FastSelect
- Library prep: QIAseq Stranded, TruSeq Stranded, NEBNext Ultra II Directional
- Sequencing: NextSeq 550
- Mapping: CLC Genomics Workbench

Genes detected with each stranded kit

genes

Agenda

Background

FastSelect -5S/16S/23S: An introduction

FastSelect –5S/16S/23S: Results

Summary

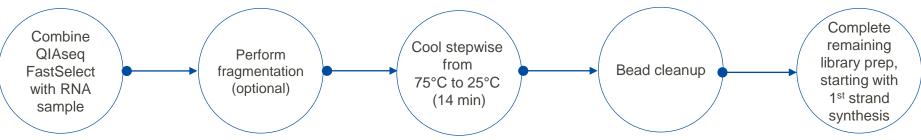
QIAGEN

FastSelect –5S/16S/23S overview

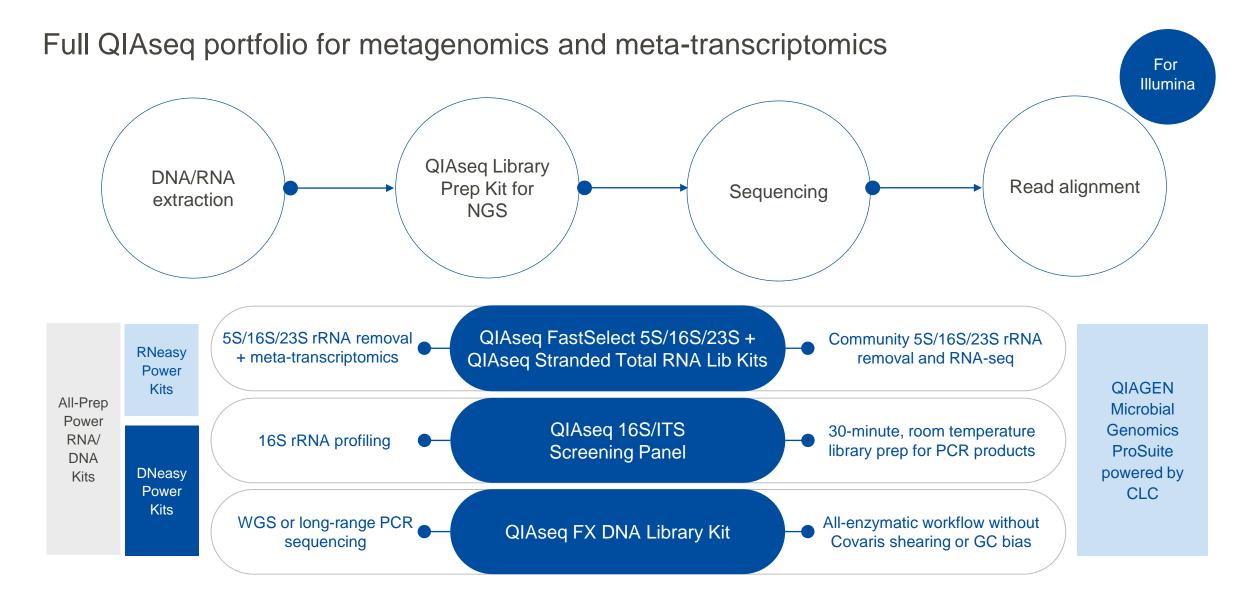
What is FastSelect -5S/16S/23S? Fragmentation and pan-bacterial (5S/16S/23S) rRNA depletion module

• Number of reactions: 24, 96 and 384

How does it work? Inhibits reverse transcription of its specific targets


Coverage: Designed to block community level cDNA synthesis of 5S, 16S and 23S rRNA

- Designed against SILVA 16S sequences (nearly 600,000 unique entries), SILVA 23S sequences (nearly unique 170,000 entries) and 5S rRNA Database (over 7,200 unique entries)
- Theoretically blocks >95% cDNA synthesis of all 5S, 16S and 23S rRNA sequences


Total RNA input: 20 ng to 1 µg

Kit compatibility: QIAseq Stranded Total RNA Lib Kit (QIAGEN Group), TruSeq Stranded (Illumina, Inc), NEBNext Ultra II Directional (New England Biolabs, Inc)

• FastSelect is compatible with most RNA library prep kits

Thank you for attending.

GEN NIS CHAGEN QUALITY JACEN

NO

175MIC

3

Questions?

Samuel Rulli, Ph.D. Samuel.Rulli@qiagen.com

Sample to Insight